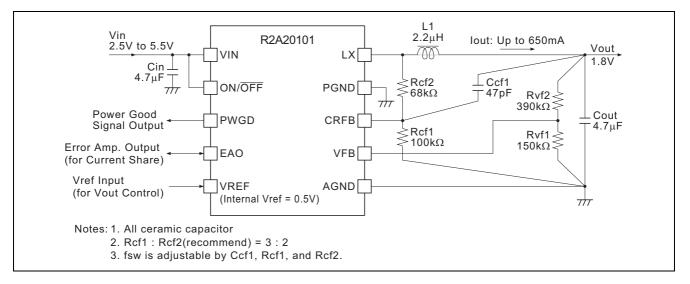
RENESAS

R2A20101BM/NP

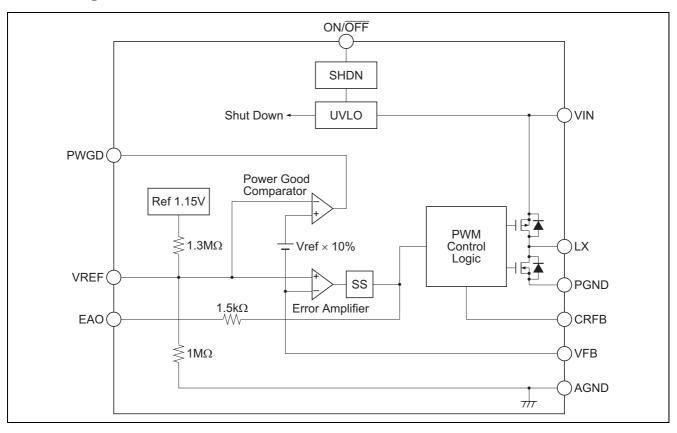
Monolithic Synchronous Step-Down DC/DC Converter

REJ03D0790-0300 Rev.3.00 May 14, 2008


Features

- Built-in low Ron power MOS FETs Pch Ron = 0.30Ω (Typ), Nch Ron = 0.14Ω (Typ)
- High switching frequency: 2 MHz (Max)
- Output current: 650 mA (Max)
- Output ON/OFF control
- Vout control
- Power good monitor
- Current share for redundant power supply operation
- Vout = 0.5 V to (VIN 0.5) V

Application


- POL (Point of Load) power supplies
- Power supply for microcomputer systems MCU-Core, I/O, Memory (DDR, SRAM, FLASH, HDD, etc.), FPGA, DSP, Graphic Processor
- Battery powered equipment systems Cellular phone (CDMA power amplifier, MCU, DSP, ASIC), PDA, Digital camera, Portable game, Handy terminal

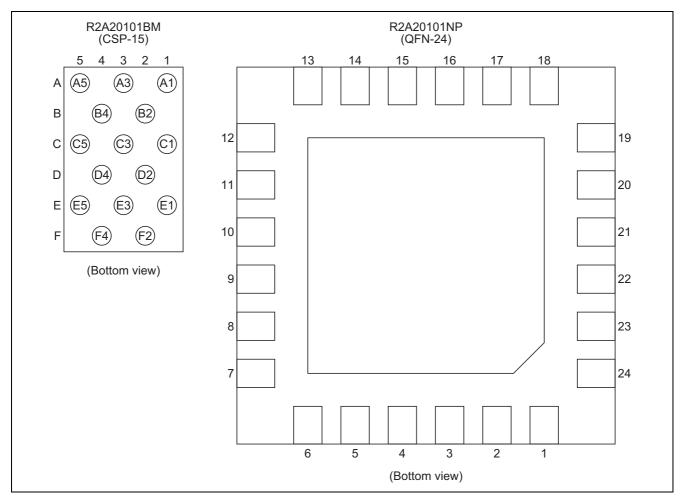
Operating Circuit Example

Block Diagram

www.DataSheet4U.com

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$


ltem	Symbol	Ratings	Unit	Note	
Power supply voltage	V _{IN}	6	V	1	
ON/OFF, PWGD, EAO, VREF,	V _{MAX}	-0.3 to (V _{IN} + 0.3)	V	1	
LX, CRFB, VFB terminal voltage					
PGND terminal voltage	V _{PGND}	-0.3 to +0.3	V	1	
Operating ambient temperature	Topr(Ta)	-40 to +85	°C		
Junction temperature 1	Tjmax1	+125	°C		
Junction temperature 2	Tjmax2	+150	°C	2	
Storage temperature	Tstg	-55 to +150	°C		

Notes: 1. Rated voltages are with reference to the AGND pin.

2. Operation by Tjmax2 is made within 24 hours through life.

Pin Arrangement

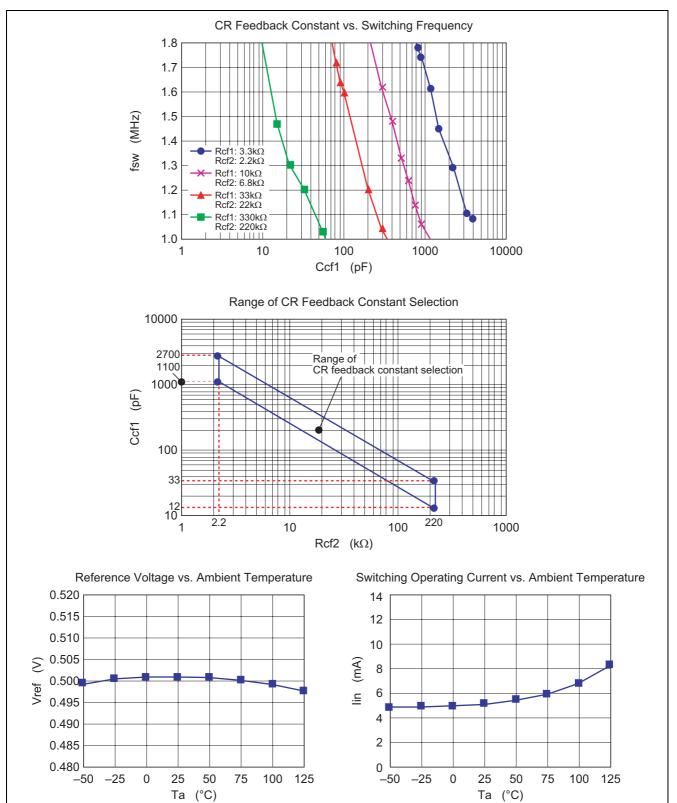
www.DataSheet4U.com

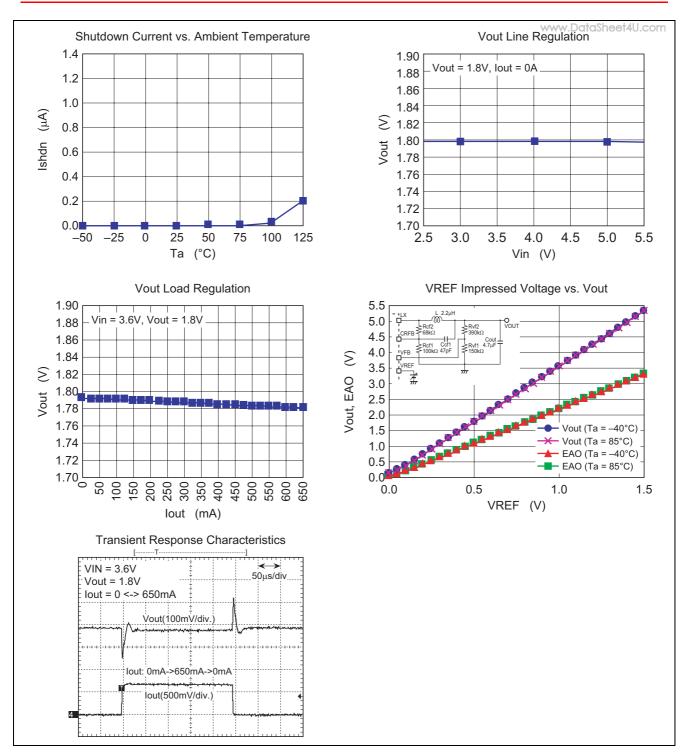
Pin Description

Pin No.			
R2A20101BM (CSP-15)	R2A20101NP (QFN-24)	Pin Name	Pin Function
A1, A3, A5	15, 16, 17	PGND	Power ground
B2, B4	11, 20	LX	Inductor connection node
C1, C3, C5	10, 21	VIN	Power supply voltage input
D4	22	ON/OFF	Output on/off control input
D2	9	CRFB	CR feedback input
E5	23	PWGD	Power good monitor output
E1	8	VFB	Feedback voltage input
F4	2	EAO	Error amplifier output (for current share)
E3	5	VREF	Vout control voltage input
F2	4	AGND	Analog ground (IC chip ground voltage)

Note: Please apply solder to pins 1, 3, 6, 7, 12, 13, 14, 18, 19, and 24 even though they are NC pins. Solder on the underside pads improves heat-radiation characteristics.

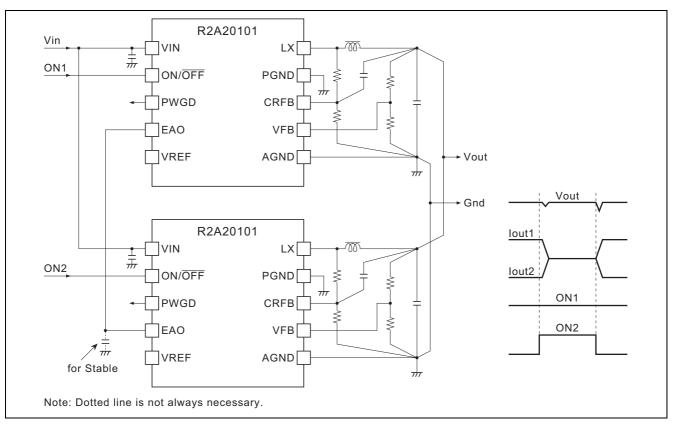
Electrical Characteristics

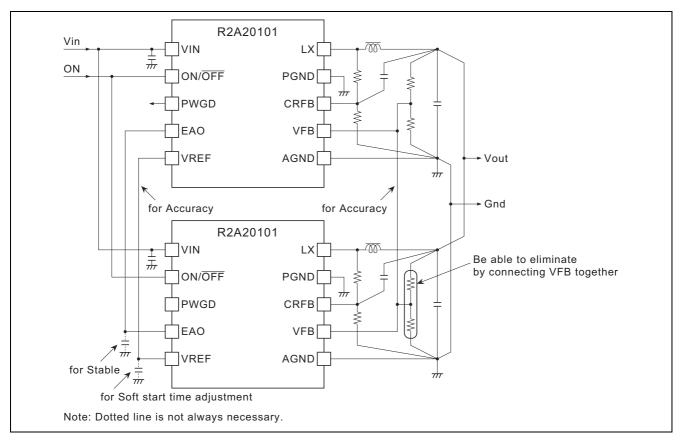

www.DataSheet4U.com


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage range	Vin	2.5	_	5.5	V	
UVL threshold high	Vuvl-Hi	2.0	2.3	2.5	V	VFB = CRFB = GND,
						Vin = rising
UVL hysteresis	Vuvl-Hys	0.15	0.22	0.29	V	
Quiescent supply current	lss	20	45	80	μΑ	
Shutdown supply current	Ishdn	_	0.0	1.0	μΑ	$ON/\overline{OFF} = 0V$
Reference voltage	Vref	0.485	0.500	0.515	V	
Vref line regulation	dVref/dVin	(-0.4)	0.1	(0)	%/V	Vin = 2.5 to 5.5V
Vref temperature stability	dVref/dTa	_	(±100)	—	ppm/°C	Ta = -40 to +85°C
VREF sink current	lvref-sink	1.3	3.7	8.0	μΑ	Vref = 2.5V
VREF source current	lvref-source	0.3	0.9	2.0	μΑ	Vref = 0V
VFB leakage current	lleak-VFB	-1	0	+1	μΑ	$VFB = 1/2 \times Vin$
Pch FET on resistance	Ron-Pch	_	0.30	0.50	Ω	VFB = CRFB = 0V,
						ILX = -100mA
Nch FET on resistance	Ron-Nch	—	0.14	0.25	Ω	VFB = CRFB = Vin,
						ILX = 100mA
Pch FET leakage current	lleak-Pch	—	—	1.0	μΑ	$ON/\overline{OFF} = 0V, LX = 0V$
Nch FET leakage current	Ileak-Nch	—	—	1.0	μΑ	$ON/\overline{OFF} = 0V, LX = Vin$
Peak current limit	Ipeak-Limit	0.7	—	—	A	
ON/OFF threshold high	Von/off-Hi	1.0	1.45	1.85	V	ON/OFF = rising
ON/OFF threshold low	Von/off-Lo	0.75	1.24	1.65	V	ON/OFF = falling
ON/OFF leakage current	lleak-on/off	-1	0	+1	μΑ	ON/OFF = Vin
ON/OFF input current	linput-on/off	_	1.4	5	μΑ	$ON/\overline{OFF} = 0.9V$
Switching frequency	fsw	Adjustable by external Ccf1, Rcf1, Rcf2		Hz		
Soft start time	tss	$56 \times \text{Rcf1/(Rcf1 + Rcf2)} \times \text{Vout}$			μS	
Power good threshold	Vth-PGood	(–15)	-10	(–5)	%	Vref = 0.5V
Power good VOL	lpg-VOL	20	—	—	μA	PWGD = 0.2V, VFB = 0V
Power good VOH	lpg-VOH	-10		—	μΑ	PWGD = 3.4V, VFB = 0.5V
Output voltage load regulation	dVout/dlout	_	±0.7	—	%/A	$L = 2.2 \mu H$, Vout = 1.8V, lout = 0 to 650mA

Note: () is design spec.

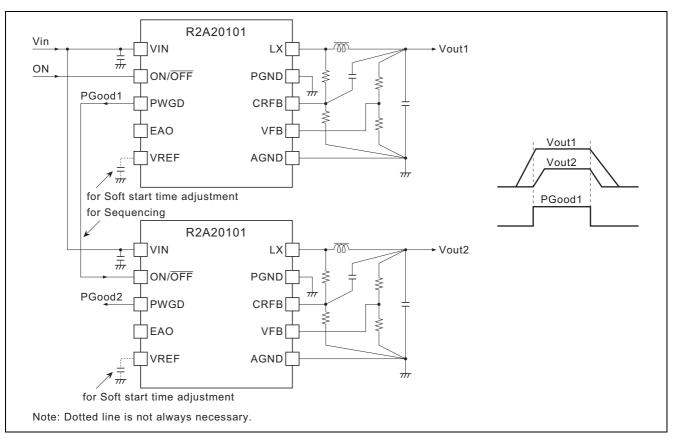
www.DataSheet4U.com

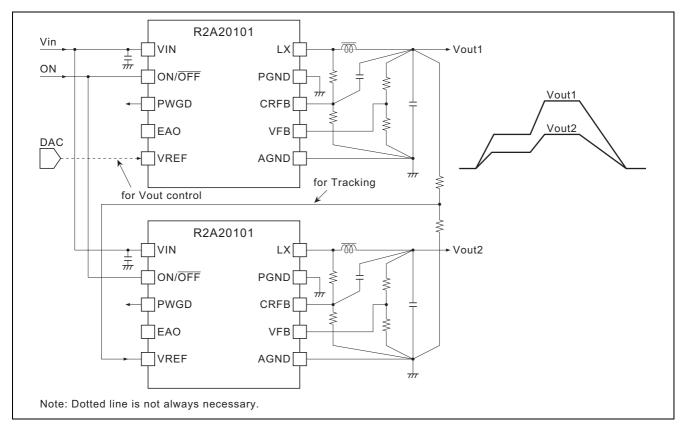



Application Circuit Example

www.DataSheet4U.com

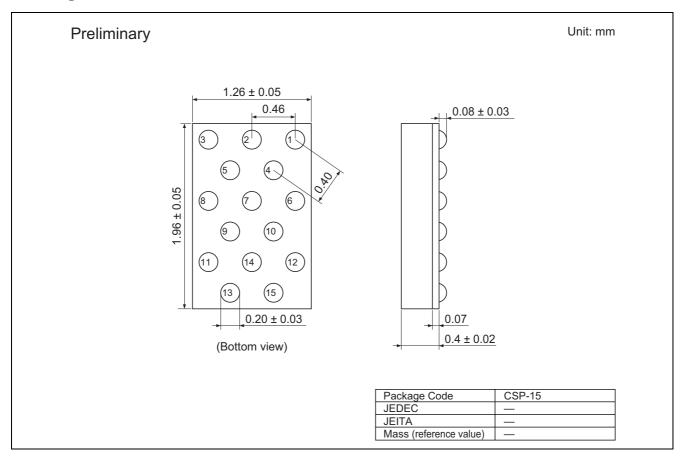
1. Current Share 1 (Redundant, Hot Swap type)

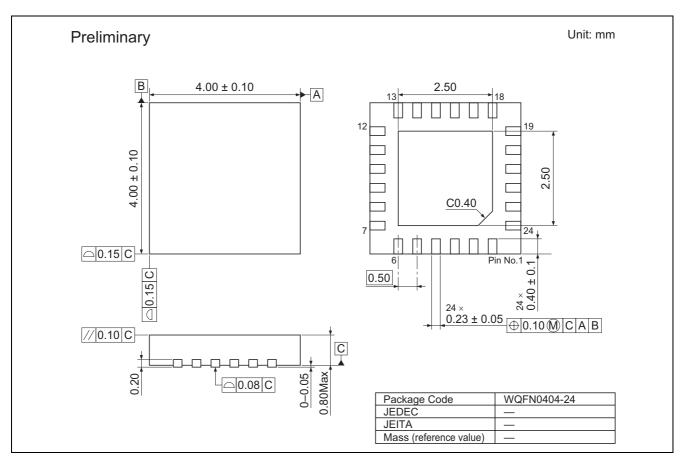

2. Current Share 2 (Accuracy type)


RENESAS

3. Sequential Start-up

www.DataSheet4U.com


4. Tracking



RENESAS

Package Dimensions

www.DataSheet4U.com

RENESAS

http://www.renesas.com

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set exception of protein ting from the date this document. Dut Renesas asproaces for description and the applicability of the states of the date this document.
 When using or otherwise relevance on military applications, approcessa in a displication in this document. Dut Renesas asproaces are not essigned not the solution in the date this document. Dut Renesas asproaces are an exception of protein different information in this document.
 When using or otherwise relevance and the protein document.
 When using or otherwise relevance and exception on protein different information in the date the information on light of the total system before deciding about the a

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510